
17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine 16 - 21 July 2023, Stony Brook, NY, USA

Novel Lung CT Image Synthesis at Full Hounsfield Range With Expert
Guided Visual Turing Test

Arjun Krishna1, Shanmukha Yenneti1, Ge Wang2, and Klaus Mueller1

1Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
2Biomedical Imaging Center, School of Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

Abstract Conventional image quality metrics are unsuitable to eval-
uate the realism and medical accuracy of synthetically generated CT
images. We describe an approach based on the concept of Visual
Turing Test that engages medical professionals to assess the generated
images and provide useful feedback that can inform the generative
process. We first describe our approach for synthesizing large numbers
of novel and diverse CT images across the full Hounsfield range using
a very small annotated dataset of around thirty patients and a large
non-annotated dataset with high resolution medical images. Using
an anatomy exploration interface we can generate CT images with
anatomies that were non-existent within either of the datasets, with-
out compromising accuracy and quality. Our approach works for all
Hounsfield windows with minimal depreciation in anatomical plausi-
bility. We then describe our Visual Turing Test methodology in detail
and show results we have obtained.

1 Introduction

Deep learning in medical applications is limited due to the
low availability of large labeled, annotated or segmented
training datasets. The scarcity persists not only because of
privacy and ownership concerns but also because of the high
cost of labeling such datasets by human experts. Likewise,
publicly available annotated high resolution image datasets
are also often very small or even non-existent.
In this work we first present a methodology that reduces or
even eliminates he problem of such small datasets by convert-
ing them into large datasets without the loss of anatomical
accuracy. Our approach goes beyond simple data augmen-
tation techniques like stretching or flipping existing images
and adds new data instances with anatomies that may not
even exist in these datasets. With this approach we are able to
increase not only the size but the overall diversity of images
in datasets significantly.
Our method uses a dataset of segmented CT images from
thirty patients and a large dataset of unsegmented CT im-
ages. Our method builds on our previous work of texture
learning [1] to expand the small annotated dataset with tex-
tures present in the large dataset. Subsequently we extract
segmentation maps from the unsegmented large dataset via a
trained U-Net. Next we train a cycleGAN on both the small
segmented data and large unsegmented data in an alternate
fashion to generate new images with segmentation maps as
inputs. This synthesis step expands on our previous work
[2] and explores the PCA space of segmentation maps in
conjunction with the cycleGAN to create CT images with
novel anatomies not present in either of the datasets.
Since commonly used image quality metrics are unsuitable

Figure 1: Flow starts at the top right corner with two datasets -
a small segmented and a large unsegmented dataset. Three differ-
ent Deep-Learning networks are used starting from a StyleGAN
followed by a U-NET segmentation network and 5 CycleGANs
which train generators for the final step.

to evaluate the realism and medical accuracy of synthetically
generated CT images, we have designed a framework that
engages medical professionals to assess the generated im-
ages along these qualitative figures of merit. Our evaluation
interface is based on the concept of Visual Turing Test and
provides several design elements to determine the degree of
realism and the sources of anatomical imperfections.

2 Our CT Synthesis Methodology

Figure 1 highlights our sequence of steps. We will briefly
summarize each step in the same sequence below.

Texture Augmentation. The smaller dataset consists of
chest CT scans with segmentation maps (lungs, heart, etc.)
of 30 patients. The larger dataset consists of non-annotated
chest CT scans of ∼14k patients. To use the two datasets
together we modified the textures of the smaller dataset with
those of the larger one, augmenting the smaller annotated
dataset 3-fold. We used the network architecture of [1] for
segment-wise texture learning and created new CT images
with the anatomy from the small dataset and the textures
from the larger dataset.

Further Augmentation from Label Training. We train
a U-Net [3] to output a segmentation map given a chest CT
image as input. We use the augmented annotated dataset
created in the previous step for training our U-Net. Having
similar textures across the two different datasets helps in
training a segmentation network on one dataset to segment
the images of another. We use the trained U-Net to segment
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Figure 2: Above figure shows two examples of novel CT scans generations. The sequential training and generation learns the correlations
of anatomical details and can be clearly seen within the columns as we move from left to right. The last two columns depict the anatomical
consistency observed in different HU windows than in generated ones. Each red arrow represents a generator of the two generators trained
in a cycleGAN setup for corresponding modalities.

all 14k patient images. Since the smaller dataset has limited
anatomy, there are errors in the segmentation outputs of the
larger dataset. k-NN classifiers are used to rank them by accu-
racy using certain characteristics of the segmentation images.
We choose the best 1/4 of segmentation outputs and add them
with their CT scans to the smaller segmented dataset. This
dataset along with the larger dataset of unsegmented images
is then used to train the generators for the synthesis.

Decomposing the Hounsfield Range for Generation
Steps. Our method generates images at full Hounsfield in
five separate steps. Fig. 3a shows the average distribution
of pixels values of a chest CT-scan over HU values. Fig.
3b shows an image in (-160, 240) HU range while Fig. 3c
shows an image in (-600, -1000) HU ranges. Two separate
generators are used to generate these HU ranges thereby as-
sisting the GANs to focus on the minute details within these
ranges since discriminators within a GAN setup focus on the
accuracy of the majority group of pixels within a particular
HU range. Hence we use five generators to generate five
distinct sets of images for five distinct HU ranges for a single
CT image generation. We first generate the middle HU range
image using the segmentation map as input since it details the
major anatomical features such as bones and organs. We then
use this generated image as input for generating the other HU
range images. This is shown in detail in Fig. 2.

Figure 3: We use 5 CycleGANs to train 5 generators for 5 non-
overlapping HU ranges (-1000, -600), (-600, -160), (-160, 240),
(240, 640), (640, 1000)

Paired and Unpaired Training via CycleGAN. To gen-
erate the CT images we follow the network architecture of
[4] for paired and unpaired training. We use a different
algorithm and data setup for training since our paired and
unpaired datasets come from different sources. We use only
the large CT dataset for unpaired training while we use all
the segmentation maps for both paired and unpaired training.
Training was done in an alternate fashion; every iteration of
paired training was followed by two iterations of unpaired
training to learn the anatomical diversity present in the un-
segmented dataset. As mentioned before, we have five such
setups to produce five relevant generators to cover all five HU
ranges. Figure 2 shows the image synthesis sequence we use
to cover the full HU-range. Shown are two CT images which
exhibit novel anatomy. The left two columns demonstrate
their anatomical consistency in the lung and bone windows.

Addition of Segmentation Maps via PCA. The larger
dataset contains CT scans of around 14k patients while we
have segmentation maps for only 3k patients. To balance
the number of segmentation maps with CT-scans for training
the cycleGAN we interpolate new segmentation maps in the
PCA space of existing ones. For this we used our previous
methodology [2] of representing segmentation maps as a
set of B-Spline curves. Since interpolations may not be
perfect anatomically we use k-NN classifiers to rank the
validity of segmentation maps and chose the best ones as
input for training the generators in paired/unpaired training
in the cycleGAN [4] setup. The creation of new segmentation
maps also helps in creating CT images with novel anatomy.

3 Our Visual Turing Test for Evaluation

Some of the popular metrics generally used to evaluate gener-
ated medical images are Structural Similarity Index (SSIM),
Peak Signal to Noise Ratio (PSNR), Fréchet inception dis-
tance (FID) and Inception Score (IS) among others. These
metrics are a good representation of how much the generative
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model is able to mimic the training distribution and some
metrics even give us a good idea of how much a model is
able to diversify its outputs. When evaluating models that
generate medical images like Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), Chest X-rays etc. a
fundamental aspect to be considered is to verify the “medical
accuracy” of the generated images. Currently, no metric can
provide us with such evaluation of generative models used in
medical imaging. Metrics such as FID and IS have a large
dependence on the pre-trained networks which can be trou-
blesome when the model fails to capture spatial relationships
between various parts of the image. Other popular metrics
such as PSNR and SSIM are numerical metrics that could be
more reliable but they have been shown to be closely related
to Mean Square Distance / Error (MSE) [5] for two images
which is widely known to be poorly correlated with human
perception of image quality or anatomical accuracy. This
is a big drawback of these metrics in context of anatomical
accuracy. So, we propose using the ability of humans having
expertise in CT to assess our generated lung CT images and
provide a better description of the generated images in the
form of a Visual Turing Test for Medical Images.

Introduction - Visual Turing Test. The Visual Turing
Test is a variation of the Turing Test that was first intro-
duced by Geman et al [6] as a way to measure the level of
understanding of a computer vision model. In the area of
medical imaging this test was used to evaluate models based
on how realistic synthetic medical images are. Chuquicusma
[7] applied it to evaluate generated malignant and benign
lung nodules while Han et al [8, 9] used it to evaluate brain
MR images. The test is administered to human experts by
showing them a randomly chosen medical image from a set
of real and generated images one at a time in a random order.
The expert then proceeds to give a feedback for each image
shown to them without any knowledge of their actual labels.
The feedback involves the experts’ opinion of whether an
image is obtained from a real patient (Real) or whether it is a
computer generated image (Fake). The primary idea of this
test is to assess if a model is successfully able to generate
medically accurate images which can be determined by mea-
suring the number of times the model is able to fool experts
into thinking that a model generated medical image is in fact
a medical image obtained from a real human being. When
experts are unable to separate the images into real or fake at
least 50% (chance baseline) of the time, the model is said to
have passed the visual Turing test.

Implementation Details. We designed a website to carry
out the Visual Turing Test with a primary focus on evaluating
generative frameworks that synthesize lung CT scans. The
user interface for this website was created using Next.js (a
server side framework built on top of react.js), tailwindCSS,
Framer motion and sanity.io (GROQ Queries) as a back-
end to store all the responses. All responses are stored in
a state which is managed by using redux, a state container.
The website is hosted using vercel and is live at https:

Figure 4: Left: Expert user evaluation interface for our Visual
Turing Test. They can choose one of "Real" and "Fake" options.
Right: More options pop up if they chose "Fake".

//visual-turing-test.vercel.app.
As the test begins, the study participant is presented with
an image and 2 options: "Real" or "Fake". If they choose
"Fake", a sub-section pops up asking them to choose another
option that best represents how fake the image looks. As
shown on the right side of Figure 4 they could choose one
of the "Almost Real", "Somewhat Real" and "Clearly Fake"
options. After choosing a "fakeness level" the participant
is shown a window as in Figure 5 where they can mark the
areas that look fake in the CT image. Once they are sure of
their choices the participant "submits" their feedback. We
designed the test to be 30 images long so as not to overwhelm
the participants. It ensures their responses are well thought
out and yield an accurate measure of anatomical accuracy for
our synthesized CT images. The images shown are randomly
chosen from one of the three windows namely bone, lung
and subdural/soft-tissue.
The test provides the following functionalities:

• Evaluates a model based on human expert feedback.
• Evaluates how close the model is to generating realistic

medical images, gauging medical accuracy.
• Collects the areas of an image marked as fake by the ex-

pert, which can later be used for training better models.

Figure 5: The interface that pops up after an expert user submits
the "Fake" option for an image. The red boxes indicate the ar-
eas of above image annotated by the user that he/she thinks look
anatomically too inconsistent for the image to be real.

https://visual-turing-test.vercel.app
https://visual-turing-test.vercel.app
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Radiologist Accuracy TP TN FP FN Almost
Real

Somewhat
Real

Clearly
Fake

1-Competent 83.33% 86.67% 80% 20% 13.33% 20% 40% 20%
2-Competent 73.33% 93.33% 53.33% 46.67% 6.67% 26.67% 26.67% 0
3-Proficient 96.67% 100% 93.33% 6.67% 0 0 60% 33.33%
Average 84.44% 93.33% 75.56% 24.44% 6.67% 15.56% 42.22% 17.78%

Table 1: Statistics of responses given by 3 radiologists

Experts chosen for this test consisted of doctors, radiologists
and senior radiology fellows. Since every participant will
have different levels of expertise, in order to measure the
performance of the model across different levels of expertise,
each person is asked to indicate their medical knowledge at
the end of the test.

Results. The test was taken by 3 radiologists, 1 of whom
had "proficient" expertise and the others had "competent"
expertise in radiology. Each of these tests presented the
radiologists with 30 images belonging to 3 different windows
(soft tissue, lung and bone) comprising 15 real CT images
and 15 fake CT images in a random order.
Upon analyzing the responses, it was found that senior radi-
ologists that are proficient were able to distinguish between
fake and real images better than the radiology fellows who
marked themselves as "competent". This can be clearly seen
in confusion matrices shown in Fig. 6 where the competent
test takers had difficulties in identifying all the fake images.
Also, according to the table, among the chosen fake images,
very few of them seemed to be "clearly fake" to the non-
experts. The statistics shown in Table 1 indicate that the
generative framework in consideration has not passed the
Visual Turing Test as expert radiologists can easily identify
most fake lung CT images from the real ones.

Analysis - The Heart Issue On closer inspection of the radi-
ologists’ feedback, we found out that expert radiologists were
able to identify the fake images because of the anatomical
errors in the heart. Our large lung CT dataset is entirely low-
dose and has CT scans from different parts of patients’ chest
collected over multiple scanners. Depending on the location
on a patient’s chest where the CT-scan was taken, a low-dose
CT image could show either 2 or all 4 chambers of the heart
in a blurry fashion. Since the low-dose CT images often did
not clearly show these chambers, the generator could not
learn these textures. This led the synthesized images to often
exhibit arbitrary number of chambers. Conversely, the other
parts of the synthesized CT images including bones, mus-
cles and the surrounding tissue looked anatomically accurate,
according to the participating radiologists.

Proposed Improvements for Future Work. One of the
improvements that could correct the anatomy of a heart in
low-dose CT is a more focused conditional generation of

Figure 6: Confusion matrices for responses of 3 radiologists.

the heart in a CT image. The conditional parameter could
either be size, shape or a template heart image taken from a
training dataset. Denoising Diffusion Probabilistic Models
(DDPMs) [10] have recently shown that they could be strong
candidates for high-def. conditional generation of images.
Further, conditional-DDPMs like ILVR-DDPMs [11] can
also be added as a refinement / extra layer for heart gener-
ation over an existing stable diffusion-based model of lung
CT, giving a user more control over the synthesis process.
DDPMs are more stable as compared to GANs and unlike
GANs could be easily customized over existing models elim-
inating the need to train new models from scratch.

4 Conclusion

Our work suggests that careful implementation of texture
based data augmentation combined with generative models
could eliminate the "small annotated-data problem" in med-
ical imaging domain. We also present an interactive visual
turing test to evaluate these models with the help of the ex-
perts’ feedback which could help develop new strategies for
overcoming the shortcoming of these models.
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